The generator matrix

 1  0  0  1  1  1  1  1  1  1 2X+3  1  X  1  1 2X+6  1  1 X+6  1  1  1  1  1  3 2X+3  1  0 2X+3  1  1  6  1 2X  1  1 2X+6  1  1  1  1  1  1  1  1  1  X  1  1  1  1  1  1  1  0  6  3 2X+6  1  1 2X  1  1 2X+3  1  1  3  1  1  1 X+3  1
 0  1  0  0  6 2X+4 2X+4 X+8  1 X+2  1  2  1  6  2  1 X+2  1  1 2X+6  7 X+3 X+8 X+1  1 2X+6  0  1  1 2X+8  8  1 X+6 2X+3 X+4 2X+7  1  0 X+7  8  6  4 X+7 X+5 2X+2 2X+3  1  4  8 X+6 X+4 2X+2  6 2X+1 2X+3  1  1  1 2X+4  7  1 2X 2X 2X+6  7  2  1 2X+5 X+2 X+3  1  2
 0  0  1  1  2  2 2X+3  1  7 2X+3 2X+7 X+2 X+8  0  4 2X+3 2X+6  2 X+2  8 2X+4 X+7  8 2X X+1  1 X+2  4  6 X+5 X+1  5  6  1 X+7  8 X+8 2X+1  3 2X+3  6 X+7 2X X+7 X+3 2X+5  7  0 2X+7  7  1 2X+2 X+6 X+6  1  1 2X+2  2 X+4 2X+5  6  3 2X+5  1  X 2X+2  1  7 2X+2  1  2 X+8
 0  0  0 2X  3  6  0  6  0  3  0  3  6  X 2X+3 2X 2X+6 2X+6 X+6 X+3 2X+3  3 2X+3 2X 2X+6 X+6 2X+3 X+6 X+3 X+6 X+3 2X 2X 2X  6  X  X X+3 X+6  X 2X+6  X X+6 X+6  3 X+6 2X 2X+6  6 2X+3 X+3 X+3 X+6 X+3 2X+6  0 2X+3  6  X 2X+6  0  0 2X+3 2X+3  0 X+6  X 2X+6  6 X+6 X+6 2X+3

generates a code of length 72 over Z9[X]/(X^2+3,3X) who�s minimum homogenous weight is 133.

Homogenous weight enumerator: w(x)=1x^0+480x^133+570x^134+1722x^135+3660x^136+3744x^137+6516x^138+9168x^139+7890x^140+12824x^141+16188x^142+12780x^143+18024x^144+19614x^145+14394x^146+15082x^147+14070x^148+6648x^149+6134x^150+4134x^151+1308x^152+1028x^153+540x^154+174x^155+104x^156+144x^157+78x^158+44x^159+42x^160+30x^161+12x^164

The gray image is a code over GF(3) with n=648, k=11 and d=399.
This code was found by Heurico 1.16 in 66.9 seconds.